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Honeycomb Martian Dunes Could Be a Clear
Sign of... Water
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NASA's SOFIA Discovers Water on Sunlit Surface of
Moon
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A place for life on Mars? New
discovery is 'best evidence yet'it's

possible.

Scientists Monday announced they 've found evidence of liquid water on Mars --
which they say is buried deep underground in cracks several miles under the

planet's surface.

Doyle Rice
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Supercooled and Glassy Water

Cold, noncrystalline states play an important role in
understanding the physics of liquid water. From recent
experimental and theoretical investigations, a coherent
interpretation of water’s properties is beginning to emerge.

Pablo G. Debenedetti and H. Eugene Stanley

Physics Today, June 2003.

War Over Supercooled Water
Physics Today, Aug 18, 2018.
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Adding salt to water...



Water is not just a dipole!



Water structure

Dissolving methane/oily stuff

AACSp<>00 in water is thermodynamically
AG > 0 unfavorable.

AS>0 Water entropy drives

AG=<0 hydrophobic association!

> Water-mediated interactions
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water?

How do we characterize hydrophobicity of proteins
from a molecular perspective?



A new perspective on characterizing
hydrophobicity of proteins and nanoscale surfaces

Focus on
water
density
near the
protein
surface




Expectation of density profile
at a hydrophobic interface




Does the local water density provide useful
signature of hydrophobicity?

-CF,, -CH,, -OCH,, -CONHCH,,
. % -CN, -OH, and -CONH,

2 8 4SS % A RS
L L

sigmoidal density profile near a
hydrophobic (-CF3, -CH3) surface?




Water density profiles near different surfaces

~ Hydrophobic — Hydrophilic | 1 5
(1.35) }(1.39) [(1.45) (1.37)
Local - 10
density of 4 '
water/bulk
density :
- 4 0.5
ﬁ E 1 nm
0.0

Strange result! Something wrong?



Are contact angle measurements consistent with chemistry?

-CONHCH

23,03

" @ e-CONHCH, |}
- -OCH,

, © @ -CHg

" ‘CF3

cos(0), simulations

i

-1 -0.5 0 0.5 1
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Local water density serves as a poor signature of hydrophobicity

/
1.5 -Hydrophobfc | | | 'Hydroﬁﬁilic -
Water (139) |(1.45) / (1.37)
density (1.23)
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Godawat, Jamadagni, and Garde PNAS, 2009



(If not the average density or the width), what are
the microscopic signatures that inform on the
hydrophobicity/philicity of the underlying surface?



The Big Idea!

Quantify
water density fluctuations
near the interface!
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Godawat, Jamadagni, and Garde PNAS, 2009



THE NEW YORRER

ANNALS OF INNOVATION

IN THE AIR

Who says big ideas are rare?

by Malcolm Gladwell

MAY 12, 2008

The history of science is full of ideas that several people had at the same time.



Stigler’s law and Pinning tails on donkeys?

The statistician Stephen Stigler once wrote an elegant essay about the futility of the
practice of eponymy in science—that is, the practice of naming a scientific discovery
after its inventor. As Stigler pointed out, “It can be found that Laplace employed Fourier
Transforms in print before Fourier published on the topic, that Lagrange presented
Laplace Transforms before Laplace began his scientific career, that Poisson published
the Cauchy distribution in 1824, twenty-nine years before Cauchy touched on it in an
incidental manner, and that Bienaymé stated and proved the Chebychev Inequality a
decade before and in greater generality than Chebychev’s first work on the topic.” For
that matter, the Pythagorean theorem was known before Pythagoras; Gaussian
distributions were not discovered by Gauss.

The examples were so legion that Stigler declared the existence of Stigler’'s Law: “No
scientific discovery is named after its original discoverer.” There are just too many
people with an equal shot at those ideas floating out there in the ether. We think
we're pinning medals on heroes. In fact, we're pinning tails on donkeys.

Stigler’'s Law was true, Stigler gleefully pointed out, even of Stigler’s Law itself. The idea
that credit does not align with discovery, he reveals at the very end of his essay, was in
fact first put forth by Merton. “We may expect,” Stigler concluded, “that in years to
come, Robert K. Merton, and his colleagues and students, will provide us with

answers to these and other questions regarding eponymy, completing what, but for the
Law, would be called the Merton Theory of the reward system of science.”



The Big Idea!

Quantify
water density fluctuations
near the interface!
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1. David Chandler
2. Calculations by my student Sarupria (PRL, 2009)
3. A clearer picture =2 John Weeks
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A. J. Patel, P. Varilly and D. Chandler, J. Phys Chem. B, 114, 1632 (2010).



Science, 1983

Van der Waals Picture of Liquids,
Solids, and Phase Transformations

R
E Not so for a David Chandler, John D. Weeks, Hans C. Andersen
P fluid near a
u hard-wall! )
L Exceptions and Qualifications
S Why? —  Of course, even for these cases where
I there are no strong associative forces,
Vv the picture will break down at low densi-
E ties where the compressibility is suffi-
ciently high to allow for relatively long
wavelength fluctuations [that is, at lower
densities, the repulsive cores are not
nearly as effective in screening (/6) the
vdW attractions mask interparticle correlations caused by the
. attractions]. For example, Eq. 12 pre-
deW@ttlng, Yet, (some) features dicts incorrect (classical) behavior at the
of vapor-liquid like nature of =~ | critical point.

the interface must survive.



Quantifying density fluctuations

PN)N

log P,(N)

g
AG = u® = —kgTlog P,(0)



Proc. Natl. Acad. Sci. USA
Vol. 93, pp. 8951-8955, August 1996
Biophysics

An information theory model of hydrophobic interactions

(solvation /hydrophobic effects /biomolecule solution structure)

GERHARD HUMMER*, SHEKHAR GARDE*T, ANGEL E. GARCIA*, ANDREW POHORILLES, AND LAWRENCE R. PRATT*Y

*Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545; ¥Department of Pharmaceutical Chemistry, University of California, San
Francisco, CA 94143; and ¥National Aeronautics and Space Administration, Ames Research Center, MS-239-4, Moffett Field, CA 94035-1000

Communicated by David Chandler, University of California, Berkeley, CA, February 27, 1996 (received for review December 13, 1995)
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Fluctuations are enhanced near hydrophobic
surfaces and are bulk-like near hydrophilic surfaces

N/<N>
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Godawat, Jamadagni, and Garde PNAS, 2009



Hydrophobicity of a group depends on the context
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Acharya et al. Faraday Discussions, 2010



Hydrophobicity of a group depends on the context
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Fluctuations are enhanced near hydrophobic
surfaces and are bulk-like near hydrophilic surfaces
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0 1 2
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Godawat, Jamadagni, and Garde PNAS, 2009
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Hydrophobic Hydrophilic
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Fluctuations are enhanced near hydrophobic surfaces
and are bulk-like near hydrophilic surfaces

Godawat, Jamadagni, and Garde PNAS, 2009



Measuring rare density fluctuations (in the tails):
a special umbrella sampling technique

Amish Patel

INDirect Umbrella Sampling

P (N) in arbitrary shaped volumes (INDUS)

Patel, Varilly, Chandler, and Garde,
Journal of Statistical Physics, 2012.




Water density fluctuations — a signature of hydrophobicity

:r.z .J;; 1 A2y
V r‘hrj .n{fk..v {':} ;)? 1 A +
St ,.M BAZEY
-?:?;,'!:sw,rg, % ﬂn: e A :-Jr;jé
. o

» <N> about the same near
—OH and —CH3 surfaces.
* Fat tail 2 enhanced
fluctuations
* P(0) 1s higher near the
hydrophobic surface

! ! |
0 30 60 90 120

u* = —kgTlog P,(0) N



Detour

Hydrophilic
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Fat tails make the water
density very sensitive to
perturbations.
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A. J. Patel, P. Varilly, S. N. Jamadagni, M. F. Hagan, D. Chandler, and S. Garde
"Sitting at the edge: How biomolecules use hydrophobicity to tune their

interactions and function",
J. Phys. Chem. B, 116, 2498-2503 (2012)




Biophysical Joumal Volume 86 May 2004 2883-2885

. . e Are fat tails
Water Dynamics and Dewetting Transitions in the Small : :
Mechanosensitive Channel MscS important 1n

Andriy Anishkin and Sergei Sukharev blOlOglcal
Biology Department, University of Maryland, College Park, Maryland fun Ct 1 0 n()

The heptameric structure of the mechano sensitive
channel of E-coli, MscS, has a relatively wide yet
highly hydrophobic trans-membrane pore (region).

We infer that MscS gate involves a vapor-lock mechanism where limited changes of
geometry or surface polarity can locally switch the regime between water-filled
(conducting) and empty (non conducting) states.




Pore opening and closing of a pentameric
ligand-gated ion channel

Fanggiang Zhu and Gerhard Hummer' PNAS, 2010

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda,
MD 20892-0520
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Water Density

* In the open state, the region between the isoleucine rings is fully hydrated; upon channel
closure, a ~15-A long segment of the central pore becomes completely dry.

* Drying of the pore is induced by remarkably subtle changes in the pore width near the
hydrophobic constriction.



hydrophobin II

Hydropathy scale
mapping

Fluctuation based
mapping



The “observer context Future: A Hydration Data Bank
(hydrophobicity of a protein surface

depends on who is looking!) — p— X-ray/NMR

structure

g g g g

Protein data bank

TULUT

Hydration data bank

l}{}l} U

Fundamental Protein Drug design
understanding interactions discovery

Patel and Garde, J. Phys. Chem. B, 2014.



Water density fluctuations of water near an interface provide an excellent
measure of hydrophobicity of a given interface and can be used to map
hydrophobicity of protein surfaces and predict their interactions.

Biomolecules use the special positioning of water (near the edge) near
hydrophobic surfaces to regulate their interactions and function.
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Interfacial thermal conductance and water structure/wetting
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Rectification of heat transfer?

Electrical diode?

>
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Heat transfer from monolayer to water is more efficient!
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