

Quantum Error Correction with GKP States in Superconducting Circuits

^{By} Nicholas E. Frattini
Date 2024.05.09

Outline		
01	Why bosonic quantum error correction (QEC)?	
02	Experimental demonstration of QEC with GKP states	Lachance-Quirion <i>et al.,</i> Phys. Rev. Lett. 129, 030501 (2024)
03	Toward better hardware	Nord Quantin

Error correction is the only game in town

Current quantum computers ~10⁻³ errors per qubit per operation

Reduce errors by adding redundancy

Daunting overhead ~10,000 physical qubits / logical

We need better hardware!

Recent surface code implementations in superconducting circuits

Quantum Error Correction (QEC) breakeven - when QEC starts to help

Recent bosonic codes with GKP states

Only 1 logical qubit + 1 auxiliary qubit

Encoding logical information in bosonic modes

Intrinsic redundancy from a richer encoding space

- Higher photon states provide more quantum levels for error correction
- Using 1 oscillator/qubit allows for logical redundancy

Requires universal control, i.e. to be able to address "all levels individually"

6

Encodings available in oscillators

GKP code for autonomous error correction

Autonomous QEC

Lachance-Quirion *et al.*, PRL (2024).

Hardware architecture at Nord Quantique

 $\stackrel{\circ}{}$ \rightarrow Modular architecture, with room for improvements

Reagor *et al.*, Phys. Rev. B, (2013). Axline *et al.*, Appl. Phys. Lett. (2016).

Storage-auxiliary entangling gate: Echoed conditional displacement (ECD)

P. Campagne–Ibarcq *et al.*, Nature **584**, 368–372 (2020). A. Eickbusch *et al.*, Nat. Phys. **18**, 1464–1469 (2022).

- Constructed from displacements and auxiliary rotations
- High-fidelity gate
- ECD duration: ~1 μs

Nord Quantique

State initialization and tomography

Universal quantum control with ECD

A. Eickbusch et al., Nat. Phys. 18, 1464–1469 (2022).

- Find set of rotations and ECDs with gate-level simulations
- For GKP, used N=9 for total duration of 11.7 μs

Initialization of GKP logical states

- Quantitative agreement with our simulation platform (within 3.5%)
- Fidelity limited by auxiliary qubit decay (77% of error budget)

Quantum error correction through reservoir engineering

\rightarrow Engineer a dissipator whose ground state manifold is the GKP manifold

Single round of the small-Big-small (sBs) protocol

• Alternate between quadratures every round

Quantum error correction of GKP logical states

Extract logical fidelity from Pauli expectation values

$$F_{\rm L} = \frac{1}{6} \sum_{\hat{\mu}_0 = \{\hat{X}_0, \hat{Y}_0, \hat{Z}_0\}} \left(\langle \hat{\mu}_0 \rangle_+ - \langle \hat{\mu}_0 \rangle_- \right)$$

Idle time optimized to trade off impact of single-photon loss and QEC

Quantum error correction of GKP logical states - Results

Optimized protocol

- Logical lifetime +29% compared to with QEC, default protocol
- Logical lifetime +24% compared to without QEC

More errors corrected than generated

Nord Quantique

16

Improving hardware

Auxiliary qubit lifetime is major limiting factor

Improving microwave loss through fabrication innovation

Choosing new materials & understanding oxides Place *et al.*, Nat Commun (2021)

Low-temperature & low-power loss source identification Ganjam *et al.*, Nat Commun (2024)

Substrate dielectric loss measurements Read *et al.*, Phys Rev Appl (2023).

Conclusions and future directions

Bosonic codes enable hardware efficiency

Demonstrated autonomous QEC of GKP states

Fabrication improvements will directly improve QEC

Improve QEC performance alongside scaling to GKP qubits

nordquantique.ca