

Versatile MRAM Technology

Sanjeev Aggarwal 2/10/2022

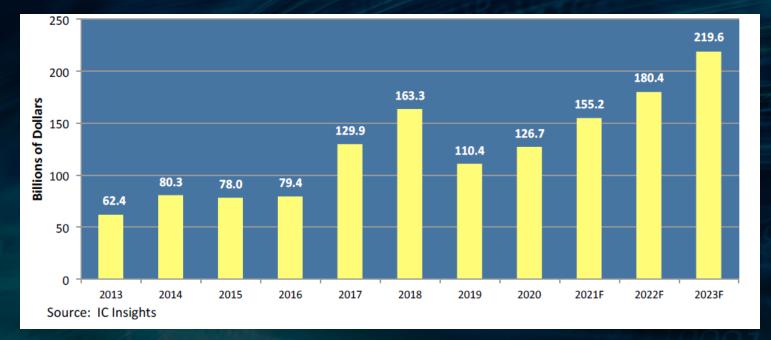
© 2022 Everspin Technologies. All rights reserved.

Safe Harbor Statement

Forward-Looking Statements

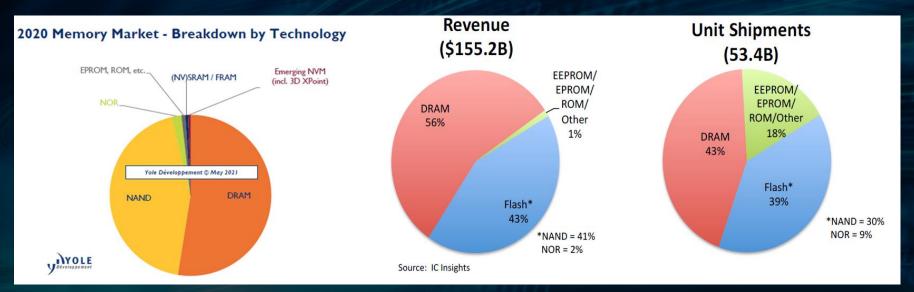
This presentation contains "forward-looking statements" that involve risks, uncertainties and assumptions. If the risks or uncertainties materialize or the assumptions prove incorrect, our results may differ materially from those expressed or implied by such forward-looking statements. All statements other than statements of historical fact could be deemed forward-looking statements, including, but not limited to: any estimates of addressable market size and our ability to capture that market, market trends and market opportunities, customer growth, product availability, technology developments, or other future events; any statements about historical results that may suggest future trends for our business; any statements regarding our plans, strategies or objectives with respect to future operations or business performance; any statements regarding future economic conditions; and any statements of assumptions underlying any of the foregoing. These statements are based on estimates and information available to us at the time of this presentation and are not guarantees of future performance. Actual results could differ materially from our current expectations as a result of many factors, including, but not limited to: market adoption of our products; our limited operating history; our ability to raise capital; our history of losses; our rate of growth; our ability to predict customer demand for our existing and future products; our ability to hire, retain and motivate employees; the effects of competition, including price competition; technological, regulatory and legal developments; and developments in the economy and linancial markets.

We assume no obligation, and do not intend, to update these forward-looking statements, except as required by law.


Outline

Memory market overview

- Advantages of Magnetic Random Access Memory (MRAM)
- MRAM Applications
- MRAM Technology
 - Toggle (Field switched) MRAM
 - Spin Transfer Torque MRAM (STT-MRAM)
- Versatility of MRAM Technology
- Summary & Future Direction


Semiconductor Memory IC Market (\$B)

After a steep drop in 2019, sales of memory ICs rebounded 15% during COVID-plagued 2020.
Stronger DRAM pricing is expected to lift total memory revenue 23% in 2021 to \$155.2 billion.

Semiconductor Memory Market 2021

Dominated by DRAM and Flash. All other memories combined are <\$5B.
FRAM TAM= \$303M, SRAM TAM= \$450M, Traditional MRAM market targets
NOR TAM= \$2.3-3B, Target for higher density MRAM.

The MRAM Promise

PERSISTENCE

Maintains memory contents without requiring power

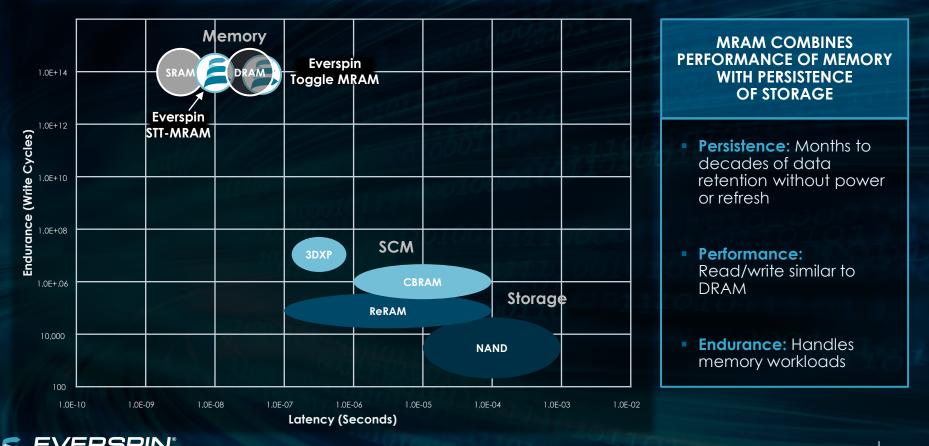
PERFORMANCE

SRAM & DRAM-like performance with low latency

ENDURANCE

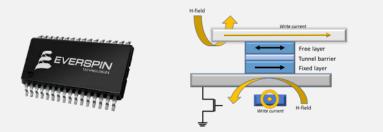
Superior durability supports memory workloads without sophisticated management

RELIABILITY


Best-in-class robustness designed and tested for extreme conditions

MRAM as a CPU-attached memory (like SRAM/DRAM) that brings non-volatile capability (like Flash)

MRAM Brings Native Persistence to Memory Workloads



MRAM Technology

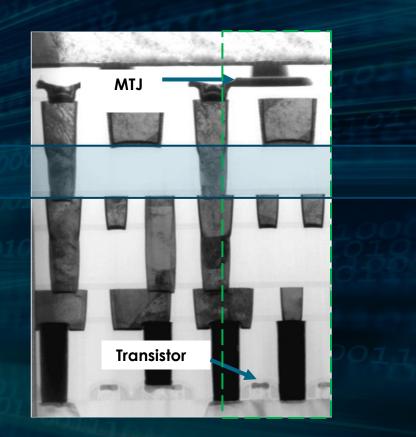
Technology Overview

Toggle (Field switched) MRAM

- In-plane magnetization
- Free layer switched with indirect magnetic fields
- Parallel and Anti-parallel states 0 and 1
- Robust extended temperature reliability/operation
- Replacement for nvSRAM, FRAM, BBSRAM and NOR Flash

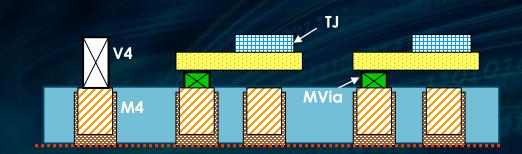
Spin Transfer Torque MRAM

- Out of plane magnetization
- Free layer switched when current passes through the tunnel barrier
- Parallel and Anti-parallel states 0 and 1
- Endurance and data retention are coupled
- High performance NVM with high chip capacity



Toggle MRAM X-section

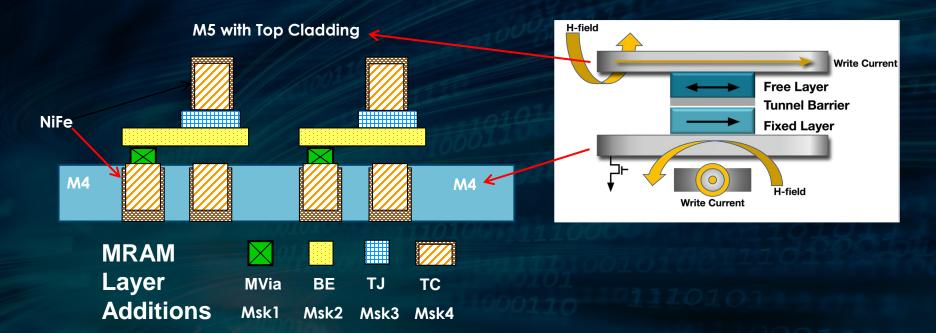
 MRAM Module integrated in the last 2 copper metal layers


Transfer from foundry to Everspin

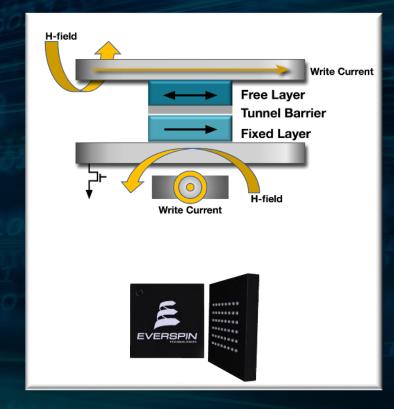
CMOS up to Via2 processed in Foundry and shipped to Everspin to complete MRAM Module



Schematic of Toggle MTJ bit



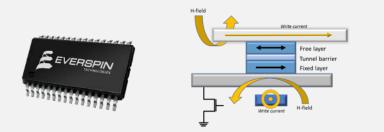
Schematic of Field Switching Lines



 NiFe films in the interconnect lines are used to generate magnetic fields to lower the bit switching current

Toggle MRAM Memory – The Ideal Non-Volatile Solution

- Near Unlimited Endurance, 20+ Year Data Retention, SRAM-Like Latencies
- Fastest non-volatile write symmetrical Read/Write speeds and byte addressable
- Eliminates Storage Components
 - No need for Caps, Super caps and batteries
 - Allows power gating \rightarrow zero standby power
- Pin compatible direct replacement
 - Standard parallel and serial (SPI) interfaces
 - Can replace SRAM, NVSRAM, BBSRAM, FRAM, E2PROM and NOR Flash


Toggle Solves System Challenges

TECHNOLOGIES

	MRAM	BBSRAM	nvSRAM	Serial NOR	FRAM			
Non-Volatile	Yes	Battery Required	V _{CAP} Required	Yes	Yes			
Endurance	10 ¹⁵	Limited by Battery	106	10 ⁵	10 ¹³ -10 ¹⁵			
Retention	20+ yrs @125°C	Battery Life 4 –7 yrs @70°C	20 yrs @85°C	20 yrs @ 85°C	10 yrs @85°C			
Parallel (ns)	35 – 45	15 – 100	25 – 45	>120 (read)	55 - 70			
SPI (MHz)	50-104	50-108	50-104	133	50-108			
External Charge	None	Battery	Capacitors	None	None			
Temp Grade	Auto	Industrial	Auto	Auto	Auto for <2 Mb			
Density	128Kb – 16Mb	8 Kb – 256 Mb	64 Kb – 16 Mb	4 Mb – 256 Mb	4 Kb – 8 Mb			
Read Cycle	Non-destructive	Non-destructive	Non-destructive	Non-destructive	Destructive			

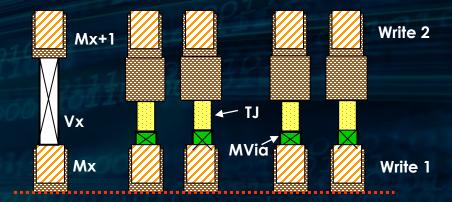
Technology Overview

Toggle (Field switched) MRAM

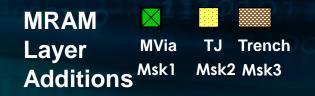
- In-plane magnetization
- Free layer switched with indirect magnetic fields
- Parallel and Anti-parallel states 0 and 1
- Robust extended temperature reliability/operation
- Replacement for nvSRAM, FRAM, BBSRAM and NOR Flash

Spin Transfer Torque MRAM

- Out of plane magnetization
- Free layer switched when current passes through the tunnel barrier
- Parallel and Anti-parallel states 0 and 1
- Endurance and data retention are coupled
- High performance NVM with high chip capacity

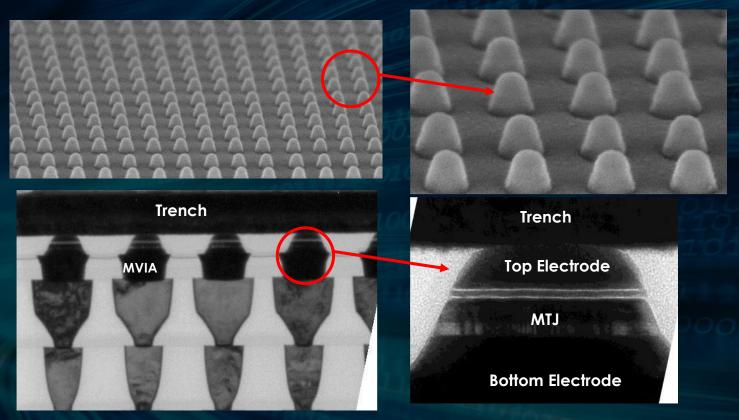


STT-MRAM – Easy to Integrate with Standard CMOS


Off Axis Integration

Mx+1 Write 2 Vx BE Mx MVia Write 1

On Axis Integration

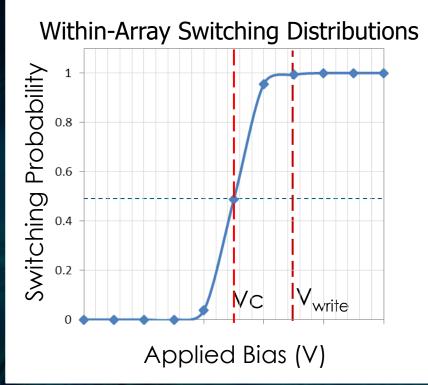


STT-MRAM Integration

Key requirements for commercial MRAM technology

- Reliable read: High MR and narrow resistance distributions
- Reliable write: Well-behaved switching distributions
- Data retention: High energy barrier (Eb) and narrow distribution
- Cycling endurance:
 - STT-MRAM requires large separation between write and breakdown
 - Low Vc, high Vbd, and narrow, well-behaved distributions for both

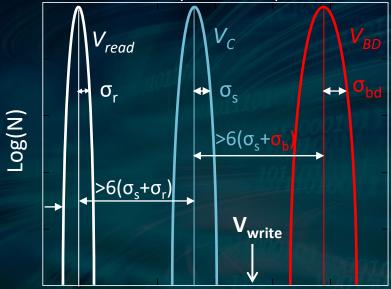
Extrinsic: Need very low level of magnetic and electrical extrinsic bits
 For narrow, well-behaved distributions


Key requirements for commercial MRAM technology

- Reliable read: High MR and narrow resistance distributions
- Reliable write: Well-behaved switching distributions
- Data retention: High energy barrier (Eb) and narrow distribution
- Cycling endurance:
 - STT-MRAM requires large separation between write and breakdown
 - Low Vc, high Vbd, and narrow, well-behaved distributions for both

Extrinsic: Need very low level of magnetic and electrical extrinsic bits
 For narrow, well-behaved distributions

Vc Distribution Determines Write Operating Voltage



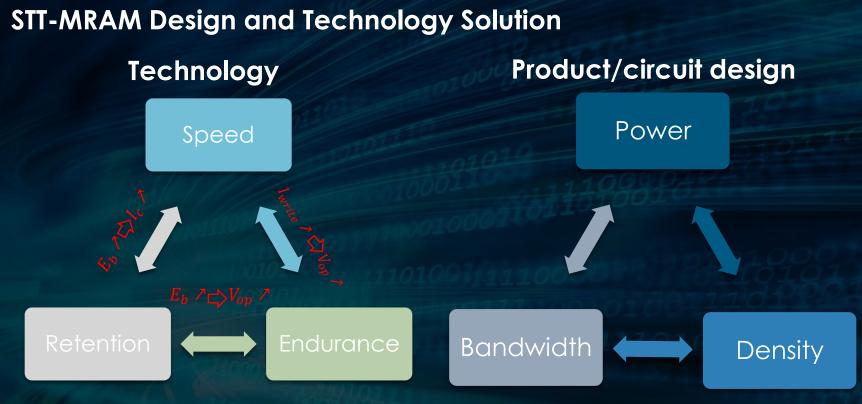
 Vc is the voltage required to switch half the bits in an array

 To achieve low write error rate (WER), the required applied voltage for write, V_{write}, is higher than Vc

Must Separate bit-to-bit Distributions in the Array

Separation of distributions is key for working memory MB memory $\Rightarrow >12\sigma$ separation

Applied Voltage

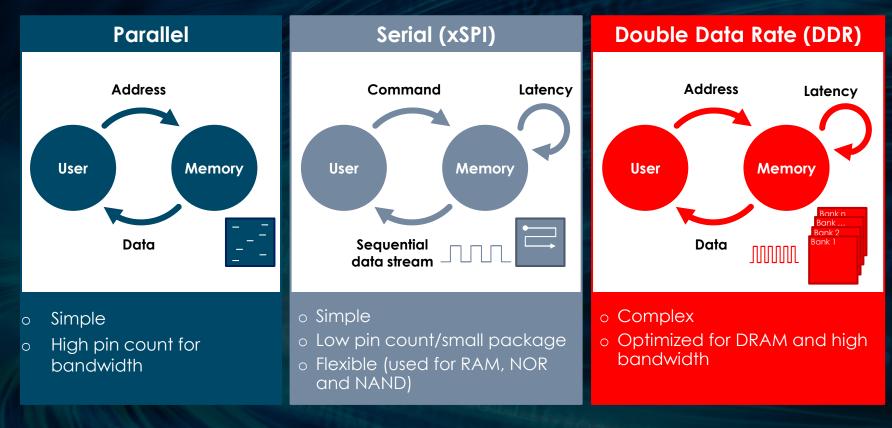


- V_{write} must be well above V_{C} and well below V_{BD}
- Tight switching distributions
- Tunnel barrier reliability
- Separation of $V_{read} \& V_{C}$
 - Avoid read-disturb errors
 - Bigger issue for smaller bits, lower $\rm I_{C}$
 - Separation gets worse with:
 - Shorter write pulses
 - Smaller bits
 - Extrinsic switching or breakdown behavior

Versatility of MRAM Technology

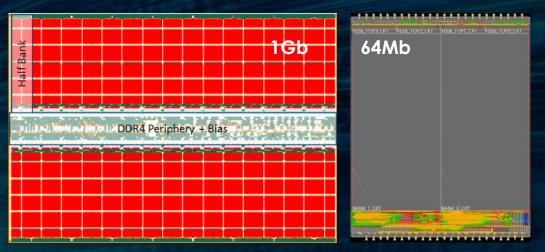
Determines bitcell performance

Determines product performance



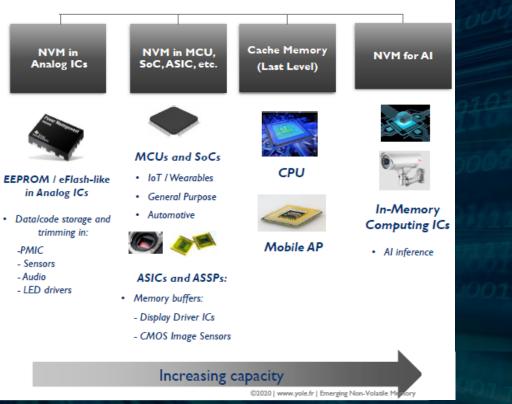
MRAM Standalone Product Family

- The same technology can address multiple products by optimizing the Technology and Product / Circuit design
- Required array performance: 10-20ns read, 20-50ns write achieved thru Technology
- Reliability will be determined by the memory array achieved thru Technology
- End-user performance is often determined by Product / Circuit design


Memory Interfaces for MRAM

Similar MTJ with Different I/F – Data Center and Industrial Markets

	1Gb ST-DDR4	64Mb xSPI
Supply voltage	1.2V	1.8V
Clock frequency	667 MHz	Up to 200 MHz
Number of IOs	16	1,4,8
Bandwidth	2.6 GB/s	Up to 400 MB/s
Temperature range	0°C to +85°C	-40°C to +85°C
Data retention	70°C 3mo	85°C 10yr
Endurance	>1e10 cycles	>1e15 cycles
Bit Error rate	<1e-11	<1e-15
Package	10x13	6x8



DDR: data center applications / high bandwidth, high density

- xSPI: industrial market / lower density, lower speed but stringent reliability
- Both products are built on GlobalFoundries 28nm CMOS

MRAM Embedded Product Family

- Currently available eMRAM solutions are focused on code storage for eFLash replacement
- Value proposition for next gen eMRAM is all about density and speed to replace eDRAM/SRAM
- Retention is less important and can be traded off for better high speed write performance
- Feasibility of MRAM for cache applications is yet to be proven
- Read/write speed and endurance requirements are very challenging
- 5ns read, 5ns write
- Extremely low BER

GF – eMRAM macro on 22nm FD-SOI

1T-1MTJ bit-cell (Cell size ~0.047 um ²)						
Specification Items	Product Spec					
Temperature	-40~125 °C					
Array size	40Mb					
Solder Reflows	260 °C 5x Reflows					
Read Access Time	19 ns (excl. ECC)					
Write Cycle Time	200 ns					
IO Width	64b+14b ECC					
Power Supply	0.8V / 1.8V					
ECC	2bit-ECC					
Data Retention	>20 years, 0.1 PPM					
Endurance	100K cycles					
AMI @ 1 PPM	±250 Oe					
SMI @ 0.1 PPM, (Median-3σ)	≥ ±450 Oe @125°C					

Source

 40Mb eMRAM macro with 5x Solder Reflows compatibility is qualified for industrial-grade applications

 Macro includes internal bias generator, temperature and timing control and 2-bit ECC options

oalFoundries

MRAM Products – Available and To Be Announced

Maker	Everspin				Global- Foundries	TSMC	Samsung	Intel	Avalanche
Product	Toggle MRAM standalone				STT-MRAM embedded				STT-MRAM standalone
Memory	128kb –	256Mb	1Gb	8Mb –	40Mb	o 10Mb 8Mb 7.2M		7.2Mb	8Mb –
capacity	32Mb	2501010	IGD	256Mb	401010	TOIND	8Mb	7.21010	16Mb
Application or interface	Serial peripheral interface or parallel interface	ST-DDR3	ST-DDR4	Serial peripheral interface	eFlash replacement	eFl	Serial peripheral interface or parallel interface		
Si technology	180 nm, 130 nm	40 nm	28 nm	28 nm	22 nm	22 nm	28 nm	22 nm	40 nm

The standalone products have several different interfaces

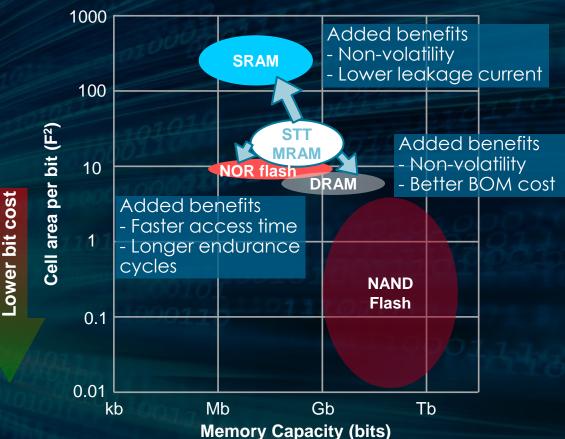
Embedded products mainly aim at replacing embedded NOR flash memory

New stand-alone STT-MRAM products will arrive soon: lower latency, unlimited endurance cycles, and industrial grade data retention

Summary & Future Direction

Comparison of MRAM with Other Memories

In Development


	SRAM	DRAM	3D NAND Flash	Toggle- MRAM	STT- MRAM	ReRAM	PCRAM	FeFET	NRAM (CNT)
Nonvolatility	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Endurance (cycles)	Unlimited	Unlimited	$10^3 - 10^5$	Unlimited	$10^9 - 10^{12}$ Unlimited	10 ⁵ - 10 ⁹	$10^{6} - 10^{9}$	10 ⁴ - 10 ⁵	10 ¹⁵
Write speed (ns)	< 1	1 – 10	$10^{5} - 10^{6}$	1-10	1 - 100	10 - 10 ⁵	100 - 10 ⁴	10	10
Memory capacity	Small – Medium	Large	Large	Small	Medium	Small – Large (demo 32Gb)	Medium – Large	Small (demo 32Mb)	Small (demo 16Mb)

Among new memories: MRAM, ReRAM, and PCRAM, MRAM has longer cycling endurance and faster write → SRAM or DRAM like usage

Future Adoption of STT-MRAM

- Bit cost is governed
 - By cell area
 - Wafer cost
 - Cost of ownership
 - Yields, etc.
- STT-MRAM offers several advantages over standard memories
 - Adoption based on value add
 - BOM cost instead of bit cost
 - System solutions (partial replacement)

Acknowledgements

Colleagues at Everspin Technologies

M. Arora, M. DeHerrera, B. Hughes, S. Ikegawa, H. K. Lee, F. B. Mancoff, S. Mukherjee, G. Shimon, J. J. Sun, A. Shah, S. M. Alam, D. Houssameddine, K. Nagel

Partners for STT-MRAM Manufacturing & Development

