IFTLE 473: More on Reshoring Microelectronics; A Closer Look at AIM Photonics

BlogsPackaging IFTLE
Jan 11, 2021 · By Phil Garrou · photonics

More on Reshoring Microelectronics

By now everyone is aware that the US government, triggered by the pandemic, is in the process of attempting to bring parts of the electronics industry that left our shores (mainly for cheaper Asian production), back onshore. [ see IFTLE 463: DoD Focused on Reshoring Electronics to the US]

Federal Computer Week just did an interesting piece Congress Moves to Bring Back Domestic Microelectronics Manufacturing”, and I’d like to highlight their point on printed circuit boards (PCBs).

Due to growing competition with China and national security concerns heightened by the pandemic, the Congress and the Department of Defense (DoD) have pushed to tighten its cybersecurity and technical supply chains. According to FCW, The Defense Department will have to stop using PCBs made in China, Russia, North Korea, and Iran, and other potentially adversarial countries in its mission systems starting in 2023, according to a provision in the 2021 defense policy bill. Last time I checked my desktop was free of Iranian PCBs. but not so with Chinese parts.

While regulations on PCB manufacturing won’t come out until mid-2022, changes are expected to occur in the next year as the DOD works with electronics companies, contractors, and suppliers to determine sourcing and capability needs. In addition to the new sourcing requirements, Congress also requires DOD to study the effects of expanding the restrictions to include commercial PCBs and assemblies.

AIM Photonics

Let’s take a look at some of the information Ed White, Assoc. VP recently shared on an AIM Photonics webcast broadcast by Semiconductor Digest.

The organization, located in Rochester NY, came into being in 2015 as one of the DoD National Manufacturing Innovation institutes under the MANTECH program. Since then, the company has gone through several expansions. It is currently predominantly a 300mm facility and is expanding its presence in test, assembly, and packaging to augment its capabilities in photonics.

AIM reportedly has 12K sq ft of class 1000 cleanroom. It is an open-access facility being run like an institute, not a university research lab. By that I mean they build the prototypes for you and then help transfer the process to a standard commercial operation if scaleup is required.


Chip on a card would detect COVID-19 antibodies in a minute

“Completely new diagnostic platform” could prove to be a valuable clinical tool for detecting exposure to multiple viruses.

Researchers in Rochester are developing an optical chip on a disposable card that can detect exposure to multiple viruses within a minute—including the coronavirus that causes COVID-19–from a single drop of blood.

Led by University of Rochester Medical Center researcher Benjamin Miller, the $1.7 million project is funded by the US Department of Defense Manufacturing Technology Program using CARES Act funds through a contract with AIM Photonics. The collaboration also involves Ortho Clinical Diagnostics, which develops and manufactures innovative laboratory testing and blood-typing solutions at its Global Center for R&D Excellence in Rochester; Syntec Optics, a maker of polymer optics in Rochester; researchers at the NY CREATES 300mm microelectronics research facility in Albany, New York, and at the University of California at Santa Barbara; and the Naval Research Laboratory in Washington, DC.

“This is a completely new diagnostic platform,” says Miller, the Dean’s Professor of Dermatology and a professor of biomedical engineering, optics, and biochemistry and biophysics. “We think this is going to be valuable in very broad applications for clinical diagnostics, not just COVID-19.”

Key to the technology is an optical chip, no larger than a grain of rice. Proteins associated with eight different viruses, including SARS-CoV-2, are contained in separate sensor areas of the chip. If someone has been exposed to any of the viruses, antibodies to those viruses in the blood sample will be drawn to the proteins and detected.

Antibodies are proteins produced by the immune system to fight off specific bacteria and viruses. They remain in the immune system even after a patient recovers from an infection.

“It is exciting to see the sensors work developed by AIM Photonics, over the past five years, now play a part in more effective testing for COVID-19 and future diseases,” says Michael Cumbo, CEO of AIM Photonics. “The industry, academic, and government partnership is a fundamental piece of this institute. Together, we foster successful technology developments such as this optical chip, which in turn enables a very innovative diagnostic platform.”

The card will enable clinicians not only to detect and study COVID-19, but also to better understand potential relationships between COVID-19 infection and previous infections and immunity to other respiratory viruses, including circulating coronaviruses that cause the common cold.

“But one of the attractive aspects of this is there’s a pathway for this technology to eventually be used in a doctor’s office or a pharmacy,” Miller says.

“Our goal is to have a validated benchtop prototype by this winter, early spring at the latest.”

The researchers will use blood drawn from 100 consenting convalescent COVID-19 patients to test the device’s effectiveness.

When the researchers complete and validate the initial prototype, they will be able to apply for up to $5.3 million in additional funding to move the technology closer to commercial availability.

University of Rochester, Newscenter

Contact Author(s)
Bob Marcotte